

ESDARF02-1BU2

Datasheet - production data

Single-line bidirectional ESD protection for high speed interface

Features

- Bidirectional device
- Extra low diode capacitance: 0.24 pF
- Low leakage current
- 0201 SMD package size compatible
- Ultra small PCB area: 0.18 mm²
- ECOPACK[®]2 and RoHS compliant component

Complies with the following standards:

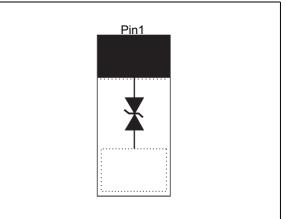
- IEC 61000-4-2 level 4
 - 15 kV (air discharge)
 - 8 kV (contact discharge)

Applications

Where transient overvoltage protection in ESD sensitive equipment is required, such as:

- Smartphones, mobile phone and accessories •
- Tablet PCs, netbooks and notebooks
- Portable multimedia devices and accessories
- Digital cameras and camcorders

This is information on a product in full production.


Communication and highly integrated systems

Description

The ESDARF02-1BU2 is a bidirectional dual line TVS diode designed to protect the data lines or other I/O ports against ESD transients.

The device is ideal for applications where both reduced line capacitance and board space saving are required.

Figure 1. Functional diagram (top view)

1/9

1 Characteristics

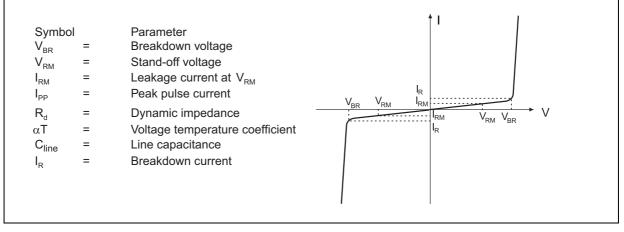

Symbol	ol Parameter		Unit
V _{PP}	Peak pulse voltage: IEC 61000-4-2 contact discharge IEC 61000-4-2 air discharge	8 20	kV
P _{PP}	Peak pulse power (8/20 μs)	30	W
I _{PP}	Peak pulse current (8/20 µs)	1	А
Тj	Operating junction temperature range	- 40 to +150	°C
T _{stg}	Storage temperature range	- 65 to +150	°C
ΤL	Maximum lead temperature for soldering during 10 s	260	°C

Table 1.	Absolute	maximum	ratings	(Tamb =	25 °C)
10010 11	/	III a / III a / III	- ange	vamp –	,

Note:

For a surge greater than the maximum values, the diode will fail in short-circuit

Figure 2. Electrical characteristics (d	definitions)
---	--------------

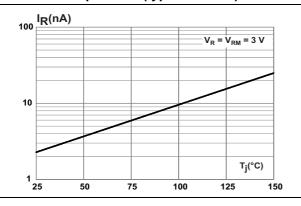


Table 2.	Electrical	characteristics	(values.	$T_{amb} = 25 °C$	
			(,		

Symbol	Test Condition	Min.	Тур.	Max.	Unit
V _{BR}	V _{BR} I _R = 1 mA				V
I _{RM}	$V_{RM} = 3 V$		1	70	nA
V _{CL}	I _{PP} = 1 A, 8/20 μA			30	V
C _{line}	$F = (200 \text{ MHz} - 3000 \text{ MHz}), \text{ V}_{R} = 0 \text{ V}$		0.24	0.35	рF

Figure 3. Leakage current versus junction temperature (typical values)

Figure 5. ESD response to IEC 61000-4-2 (+8 kV contact discharge)

Figure 4. Junction capacitance versus applied voltage (typical values)

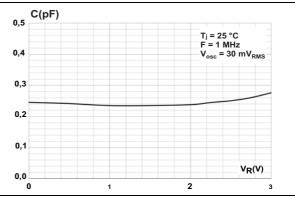


Figure 6. ESD response to IEC 61000-4-2 (-8 kV contact discharge)

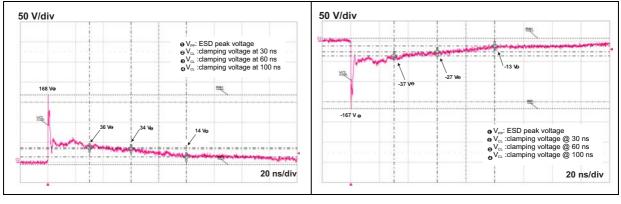
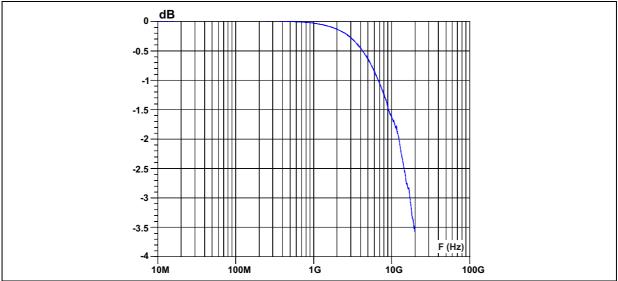
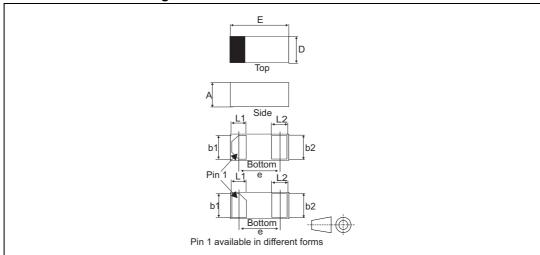



Figure 7. S21 attenuation measurement results



DocID026231 Rev 1

2 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

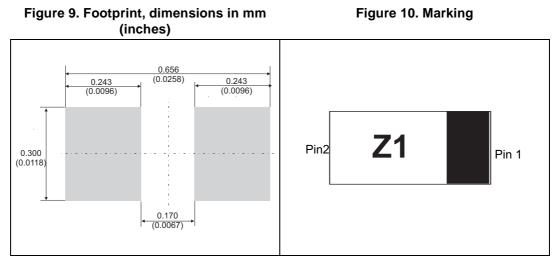
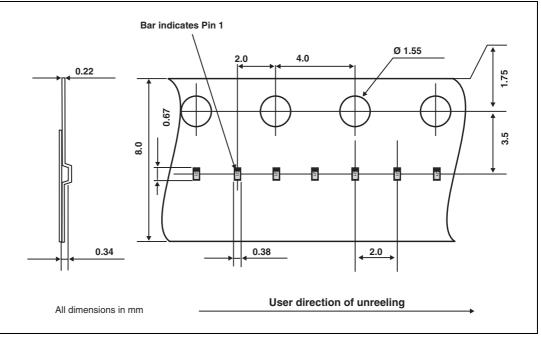


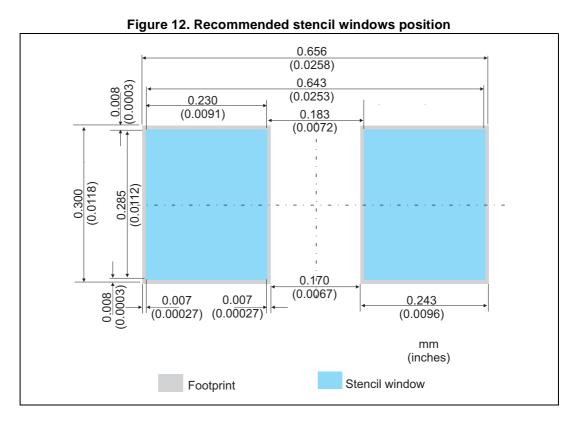
Table 3. 0201 package dimension values

			Dimer	nsions		
Ref. Milli		Millimeters	llimeters		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	0.23	0.28	0.33	0.0091	0.0110	0.0130
b1	0.20	0.25	0.30	0.0079	0.0098	0.0118
b2	0.20	0.25	0.30	0.0079	0.0098	0.0118
D	0.25	0.30	0.35	0.0099	0.0118	0.0138
E	0.55	0.60	0.65	0.0217	0.0236	0.0256
е		0.35			0.0138	
L1	0.13	0.18	0.23	0.0052	0.0071	0.0091
L2	0.14	0.19	0.24	0.0055	0.0075	0.0095



Note:

Product marking may be rotated by 180° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

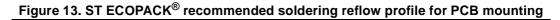


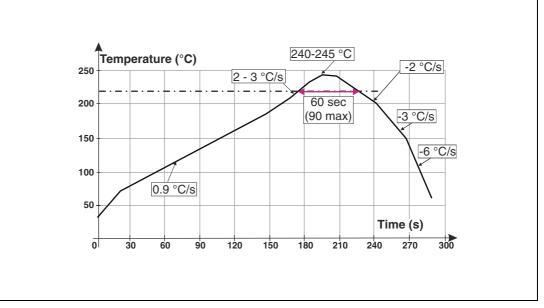
3 Recommendation on PCB assembly

3.1 Stencil opening design

3.2 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed
- 4. Solder paste with fine particles: powder particle size is 20-45 $\mu m.$

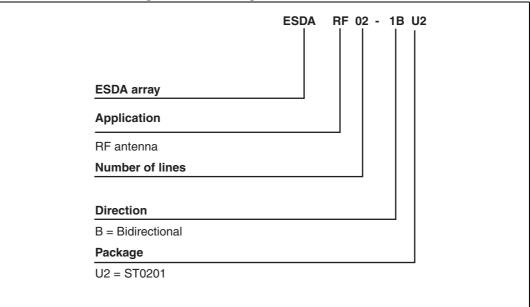

3.3 Placement


- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ± 0.05 mm is recommended.
- 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.4 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. The symmetrical layout is recommended, in case any tilt phenomena caused by asymmetrical solder paste amount due to the solder flow away.

3.5 Reflow profile



Note:

Minimize air convection currents in the reflow oven to avoid component movement.

4 Ordering information

Figure 14. Ordering information scheme

Table 4. Ordering information

Order code	Marking	Weight	Base qty	Delivery mode
ESDARF02-1BU2	Z1 ⁽¹⁾	0.124 mg	15000	Tape and reel

1. The marking can be rotated by 180° to differentiate assembly location

5 Revision history

Table 5. Document revision history

Date	Revision	Changes
22-Jul-2014	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

DocID026231 Rev 1